1. Home
  2. Skeleton
  3. Diagnosis
  4. Indications
  5. Treatment

Authors of section

Authors

Harry Hoyen, Simon Lambert, Joideep Phadnis

Executive Editor

Simon Lambert

Open all credits

ORIF - Plate fixation

1. General considerations

Introduction

Plating with precontoured periarticular locking plates provides angular-stable fixation and is the most commonly used method of distal humeral fracture fixation.

Treatment principle

In this fracture, one column has a simple fracture (ie, intrinsic stability after reduction). This is stabilized first with interfragmentary compression.

The articular fracture is a simple pattern and therefore is stabilized by interfragmentary compression (usually during plate application).

The other column has a comminuted fracture (simple or fragmentary wedge) which has no intrinsic stability after reduction. This is stabilized next by bridge plating.

ORIF - Plate fixation

If both columns have comminuted fractures, then both are stabilized by bridge plating.

For many comminuted fractures, it is preferable to bridge the comminution without reducing and securing each fragment individually.

This approach preserves the blood supply and healing capacity of the fragments while relying on the implants for relative stability until early healing is established.

If both columns have comminuted fractures, then both are stabilized by bridge plating.

Triangle-of-stability concept

The mechanical properties of the distal humerus are based on a triangle of stability, comprising the medial and lateral columns and the articular block (see also the anatomical concepts).

In principle, the intraarticular fracture is fixed first. Thereby the fracture is converted to an extraarticular fracture and treated likewise. The less complex column is then addressed next.

The mechanical properties of the distal humerus are based on a triangle of stability, comprising the medial and lateral columns and the articular block.

Parallel vs perpendicular plating

There is little biomechanical evidence from in vitro studies to suggest that one has more advantages than the other. However, in clinical practice, a specific fracture pattern may indicate a specific plate construct.

In a very low transverse fracture, ie, exiting at or below the level of the olecranon fossa, the articular block does not provide enough hold for the application of a dorsolateral plate.

An alternative is a dorsolateral plate with lateral tab. This permits insertion of screws from lateral-to-medial into the articular block as well as posterior-to-anterior into the capitellum.

Plate selection

Precontoured anatomical plates have been designed. If these are not available, at least one column (usually the lateral column) should be fixed with a small-fragment LCP in bridging mode. The other column can also be fixed with a small-fragment LCP or a reconstruction plate in bridging mode.

Note: ulnar nerve at risk

On the medial side, if the fracture exits just above the medial condyle, the ulnar nerve is at risk and needs to be exposed, released, and protected (see also neurological protection and handling).
Ulnar nerve at risk if the fracture exits just above the medial condyle.

Note: radial nerve at risk

For balanced fixation, it may be necessary to use a longer lateral plate, putting the radial nerve at risk.
Therefore, it may be necessary to expose the nerve and release it from the lateral intermuscular septum (see also neurological protection and handling).
Radial nerve at risk with longer lateral plate

2. Patient preparation and approaches

Patient positioning

This procedure is usually performed with the patient either in a prone position or lateral decubitus position.

Approaches

A posterior triceps-elevating approach is preferred. However, triceps-on or olecranon osteotomy approaches may be used depending on surgeon’s preference.

The triceps-split approach does not allow for accurate control of the articular block and column fixation and is therefore not recommended.

Skin incision of triceps-split, triceps-on, or olecranon osteotomy approach

3. Preparing the fracture site

In principle, preserve all fracture fragments attached to soft tissue in situ if possible.

Keep removal of hematoma to the minimum necessary to facilitate the exposure of the fracture.

Note: The more distal the transcondylar fracture line and the more complex the articular fracture pattern, the greater the risk to fragmental perfusion. Soft-tissue attachments are vital to fracture healing and should be respected (see additional material on vascularization).
Vascularization around the distal humerus

4. Reduction and fixation of articular block

Indirect reduction

In case of comminution of both columns, an external fixator or distractor may be used to provisionally control angular and rotational alignment, although in most cases, manual traction is sufficient.

Distraction may be performed by transarticular or periarticular pin placement depending on the available bone stock of the articular segment.

Note: Plan the pin insertion to avoid interference of the distractor with later plate application.
Pitfall: When inserting the proximal pin, identify and protect the radial nerve to avoid injury as it crosses the spiral groove of the humerus (see also neurological protection and handling). To identify the nerve, either extend a posterior approach or make a separate small lateral incision.
Indirect reduction with a distractor

Articular reduction

Reduce the articular fragments manually, with K-wire joysticks or pointed reduction forceps.

Hold the reduced articular block with pointed reduction forceps. Thereby extrinsic interfragmentary compression is gained.

Pitfall: Take care not to create malalignment through inaccurate overcompression.
Holding the reduction of the articular block with forceps, gaining extrinsic interfragmentary compression

Temporarily fix the fragments with one or more K-wire.

With a K-wire, interfragmentary positioning is achieved but no compression.

Temporary K-wire stabilization of the intraarticular fracture

Fixation of articular block

In poor-quality bone, interfragmentary compression is undesirable, and therefore interfragmentary alignment is gained with a position screw.

If the bone quality allows, interfragmentary compression is gained by either extrinsic or intrinsic techniques.

There are two options for definitive fixation with compression, which may be combined:

  • Lag screw outside a plate
  • Lag screw through the plate
  • Compression with forceps and holding it with a locking screw through a plate

Lag screw fixation outside plate

Use a lag screw (a partially threaded 4.0 cancellous screw, or a fully threaded 2.7 or 3.5 cortical screw with overdrilling the near fragment) to obtain interfragmentary compression.

Pearl: Insert the lag screw from the side opposite to the condylar fragment with better bone quality to gain optimal screw purchase.
Lag screw fixation of the intraarticular fracture

In very distal fractures, the positioning K-wire can be retained to maintain rotational stability.

Lag screw fixation of the intraarticular fracture with additional K-wire

5. Supracondylar reduction and fixation

Basic techniques

The basic technique for application of anatomical plates is described in:

If precontoured anatomical plates are not available, see the basic technique for application of reconstruction plates.

Reduction and temporary fixation

Reduce the reconstituted articular (condylar) block to the more stable column and use one or more K-wires for preliminary fixation.

Reduce the comminuted fragment of the other column into correct alignment and use one or more K-wires for preliminary fixation.

Ensure an accurate alignment of the articular block to the shaft (see also the anatomical concepts).

It is recommended to check alignment under image intensification.

Temporary K-wire fixation of metaphyseal fracture reduction

Application of the first plate

Apply the first plate to the less fragmented column.

Provisionally fix the plate to the bone with a cortical position screw through a slotted combihole proximal to the fracture.

Provisional fixation of the lateral plate to the bone with a cortical position screw through a slotted combihole proximal to the fracture

Place a long locking screw through the plate into the articular block to hold the compression. If possible, use two long locking screws.

Insertion of locking screws into the articular block

Compression plating for simple column fracture

A column fracture with intrinsic stability after reduction may be fixed with compression plating.

Compression is applied to the simple column fracture before placement of the other plate.

Release the positioning screw slightly and insert a bicortical cortical screw eccentrically in a more proximal plate hole for compression in the plane of the plate. Then tighten the positioning screw.

Pearl: In good-quality bone, two proximal screws may be sufficient. In this case, insert the load screw through the most proximal plate hole for near-far fixation (to resist torsional force in the fracture fixation).
Compression is applied to the simple column fracture before placement of the other plate.

Insert at least one further proximal cortical screw in neutral mode or a locking screw, usually in the most proximal screw hole.

The other, less stable column fracture may be fixed with bridge plating as described below.

Compression plating of the simple column fracture before placement of the other plate

Bridge plating for comminuted column fractures

A comminuted column fracture with lack of intrinsic stability after reduction should be fixed with bridge plating.

If the columnar fragmentation is unstable, no compression should be exerted.

Before inserting further screws into the first plate, apply the second plate to the bone and provisionally fix it in the same way as the first.

Insert a long locking screw into the articular block, two if possible.

Provisional application of the second plate to the bone

Insert at least one further proximal screw in both columns. This can be either a cortical screw in neutral mode or a locking screw, depending on bone quality.

Pearl: In good-quality bone, two proximal screws may be sufficient. In this case, insert the second screw through the most proximal plate hole for near-far fixation (to resist torsional force in the fracture fixation).
Parallel bridge plating

Insertion of remaining screws

In poor-quality bone, insert further locking screws in the diaphyseal segment.

The screw density should be similar on both columns.

Note: The screw density and cortical/bicortical screw depth should increase with decreasing bone quality.
Parallel bridge plating with additional locking screws in poor-quality bone

Bone graft

In case of great metaphyseal comminution, or missing bone, use a bone graft or the preserved fracture fragments.

Make sure not to graft the olecranon fossa.

In case of great metaphyseal comminution, or missing bone, use a bone graft or the preserved fracture fragments.

6. Final assessment

Visually inspect the fixation and manually check for fracture stability.

Repeat the manual check under image intensification.

Ensure the ulnar nerve is not unstable or tethered on implants throughout a full range of motion.

7. Aftercare

Introduction

The rehabilitation protocol consists usually of three phases:

  • Rehabilitation until wound healing
  • Rehabilitation until bone healing
  • Functional rehabilitation after bone healing

Immediate aftercare

The arm is bandaged to support and protect the surgical wound.

The arm is rested on pillows in slight flexion of the elbow so that the hand is positioned above the level of the heart.

Short-term splinting may be applied for soft-tissue support.

Neurovascular observations are made frequently.

Semireclining patient position, with the elbow elevated, preferably above the chest, on pillows

Hand pumping and forearm rotation exercises are started as soon as possible to reduce lymphedema and to improve venous return in the limb. This helps to reduce postoperative swelling.

Hand pumping

Mobilization until wound healing

Gravity-eliminated active assisted exercises of the elbow should be initiated as soon as possible, as the elbow is prone to stiffness:

  • The bandages are removed, and the arm rested on a side table
  • Flexion/extension of the arm at the elbow is encouraged in a gentle sweeping movement on the tabletop as far as comfort permits (as illustrated)
  • Full pronation and supination in protected arm position is encouraged
  • Exercises are performed hourly in repetitions, the number of which is governed by comfort
  • Between periods of exercise, the elbow is rested in the elevated position for at least the first 48 hours postoperatively
  • Keep the arm elevated between periods of exercise until the wound has healed
Flexion/extension of the arm at the elbow in a gentle sweeping movement on the tabletop

Rehabilitation until bone healing

Note: Close surveillance by the clinician during this rehabilitation period has a tremendous impact on the patient outcome.

Active patient-directed range-of -motion exercises should be encouraged without the routine use of splintage or immobilization.

Avoid forceful motion, repetitive loading, or weight-bearing through the arm.

A simple compressive sleeve can provide proprioceptive feedback which can help regain motion and avoid cocontraction.

No load-bearing (ie, pushing, pulling, or carrying weights) or strengthening exercises are allowed until early fracture healing is established by x-ray and clinical examination.

This is usually a minimum of 8–12 weeks after injury. Weight-bearing on the arm should be avoided until bony union is assured.

The patient should avoid resisted extension activities, especially after a triceps-elevating approach or olecranon osteotomy.

Rehabilitation after bone healing

When the fracture has united, a combination of active functional motion and kinetic chain rehabilitation can be initiated.

Active assisted elbow motion exercises are continued. The patient bends the elbow as much as possible using his/her muscles while simultaneously using the opposite arm to gently push the arm into further flexion. This effort should be sustained for several minutes; the longer, the better.

Gravity-eliminated active-assisted elbow motion exercises

Next, a similar exercise is performed for extension.

Extension exercise

If the patient finds it difficult to accomplish these exercises when seated, then performing the same exercises when lying supine can be helpful.

Note: When a damaged joint is rehabilitated in this way, the risk of “co-contraction” is reduced, and the incidence of chronic regional pain syndrome is also reduced.
Over-head elbow motion exercises

Implant removal

Generally, the implants are not removed. If symptomatic, hardware removal may be considered after consolidated bony healing, usually no less than 6 months for metaphyseal fractures and 12 months when the diaphysis is involved. The avoidance of the risk of refracture requires activity limitation for some months after implant removal.