Nonoperative treatment
Oblique fractures of the tibial diaphysis can be treated nonoperatively if the initial displacement is small and there is <1 cm shortening.
Operative treatment with a nail
Nailing is usually a good option for tibial fractures, but is technically more difficult for proximal and distal locations.
Operative treatment with plate and screws
For the treatment of simple oblique fractures in the diaphyseal area, absolute stability is recommended.
For this, anatomical reduction and interfragmentary compression are necessary.
The method of interfragmentary compression is determined by the fracture geometry and the plane of the obliquity.
1. The tip of the fracture is in the center of the anteromedial or anterolateral surface of the tibia
In this case, the fracture can be compressed with an axial compression plate, with a supplementary lag screw through the plate.
The apex of the fracture should be underneath the plate.
2. The tip of the fracture is not in the center of the anteromedial or anterolateral surface, but either posterior or anterior
In this case, compression must be done with a lag screw, usually inserted through the plate. In this case, the plate is used in protection rather than compression mode. The apex of the fracture is not underneath the plate, but either anterior or posterior of it.
3. The tip of the fracture lies on the tibial crest
In this case, a lag screw outside of the plate (protection mode) is usually required.
This procedure is normally performed with the patient in a supine position.
The anteromedial approach is used most commonly for fractures of the distal third tibial shaft. However, it can be used to expose the entire anteromedial surface.
It is also useful for debridement and irrigation of open fractures when an incision on the injured subcutaneous surface is to be avoided.
The anterolateral approach is used uncommonly, but may be necessary when the medial soft tissues are compromised.
As anatomical reduction is necessary, open, or direct, reduction is needed.
Mobilize just enough of the periosteum around the fracture edges to control the reduction. Take care to protect the periosteum wherever possible.
Because they do less damage to the soft tissues, pointed reduction forceps are best used.
In a first step, length and rotation must be restored. This may be possible with manual traction. Otherwise, mechanical aids such as a large distractor, or bone spreader, should be considered.
In a second step, once length and rotation are restored, pointed reduction forceps are used to compress and anatomically reduce the fracture. The forceps tips should be applied perpendicular to the plane of the fracture, just like a lag screw. Place the forceps outside the intended path of the lag screw.
Confirm the fracture plane and ensure that the plate can not be applied over the tip of the fracture. If this is possible, use an axial compression plate with a lag screw through the plate instead. If, on the other hand, the tip of the fracture lies on the tibial crest, the lag screw must be inserted outside of a protection plate.
Before starting the procedure, the exact position of the plate should be determined according to the position of the lag screw. The screw should be inserted perpendicular to the fracture plane.
However, if this is not possible, at least insert the screw through the center of the fracture.
The chosen plate (usually a narrow, 4.5 mm DCP) should allow
1. A hole near the middle of the fracture, for the first lag screw to be inserted as perpendicularly as possible to the fracture plane.
2. Sufficient length for at least 4 screws proximal and distal to the fracture zone.
Usually a 9-10 hole straight 4.5 mm DCP is used. Remember that whenever the plate is placed distally, the plate must be twisted and bent to match the shape of the tibia in that region.
Using a 4.5 mm drill guide and a 4.5 mm drill bit, drill a gliding hole in the near cortex.
Ensure that the direction of the drill is as perpendicular to the fracture plane as possible. If this is not possible, ensure that the lag screw will go through the center of the fracture.
Insert the 4.5 mm / 3.2 mm drill guide through the plate and the gliding hole. Use a 3.2 mm drill bit to drill a thread hole just through the far cortex.
Use a depth gauge through the plate to measure for screw length.
Measure the longer side of an oblique drill hole, as shown, to ensure sufficient screw length.
A screw should protrude 1-2 mm through the opposite cortex to ensure thread purchase. However, too long a screw may be tender, or injure soft tissues.
Use a 4.5 mm tap and the corresponding drill sleeve to tap the thread hole.
Insert the lag screw and carefully tighten it. Confirm that the fracture is reduced anatomically and compressed.
Insert the screws alternating between the proximal and distal fragments. Start with the screws closest to the fracture plane and work your way outwards.
Drill for the fixation screws. At least 3 screws should be used on the proximal fragment, and at least 3 screws on the distal fragment.
For all diaphyseal screws, use cortical screws, observing the following steps:
Perioperative antibiotics may be discontinued before 24-48 hours.
After surgery, the patient’s leg should be slightly elevated, with the leg placed on a pillow, 4 cm above the level of the heart.
Attention is given to:
A brief period of splintage may be beneficial for protection of the soft tissues, but should last no longer than 1-2 weeks. Thereafter, mobilization of the ankle and subtalar joints should be encouraged.
Active and assisted motion of all joints (hip, knee, ankle, toes) may begin as soon as the patient is comfortable. Attempt to preserve passive dorsiflexion range of motion.
Limited weight-bearing (15 kg maximum), with crutches, may begin as tolerated, but full weight bearing should be avoided until fracture healing is more advanced (10-12 weeks).
Follow-up is recommended after 2, 6 and 12 weeks, and every 6-12 weeks thereafter until radiographic healing and function are established. Depending on the consolidation, weight bearing can be increased after 6-8 weeks with full weight bearing when the fracture has healed by x-ray.
Implant removal
Implant removal may be necessary in cases of soft-tissue irritation by the implants. The best time for implant removal is after complete bone remodeling, usually at least 24 months after surgery. This is to reduce the risk of refracture.