Authors of section

Authors

Martin Jaeger, Frankie Leung, Wilson Li

Executive Editors

Peter Trafton

Open all credits

ORIF - Plate fixation

1. Principles

Proper reduction

Proper reduction of the humeral head fragment is key. This may require a glenohumeral arthrotomy, via either an osteotomy of the lesser tuberosity or tenotomy of the subscapularis tendon, to improve visualization and manipulation.

Angular stable versus standard plates

This procedure describes proximal humeral fracture fixation with an angular stable plate (A). Sometimes, these implants are not available. Standard plates provide an alternative option, for example the modified cloverleaf plate (B). Presently, the specific indications, advantages, and disadvantages of angular stable and standard plates are being clarified. There is some evidence that angular stable plate provide better outcomes. In addition to type and technique of fixation, the quality of reduction, the soft-tissue handling, and the characteristics of the injury and patient significantly influence the results. There is no evidence that the use of angular stable plates will overcome these other factors.

orif plate fixation

2. Patient preparation and approaches

Patient preparation

It is recommended to perform this procedure with the patient in a supine position (with the beach chair position as alternative).

Approach

For this procedure a deltopectoral approach normally used.

hemiarthroplasty

3. Reduction and preliminary fixation

Reduction of the humeral head

Reduction of the humeral head may be possible with digital pressure without open exposure. If this is unsuccessful, one could use a periosteal elevator or a bone hook inserted into the glenohumeral joint through a small incision of the rotator cuff.

Prolonged attempts at closed reduction are not encouraged. Proceed with open reduction through an anterior shoulder arthrotomy. For a description of the anterior shoulder arthrotomy see the deltopectoral approach.

One or two threaded pins in the humeral head may be used as “joy-sticks”, to aid the reduction.

mio screw fixation

Fix the humeral head temporarily

Secure the reduced humeral head temporarily using 2 or 3 K-wires. As shown, they are placed from distal to proximal.

Make sure that they are anterior enough to avoid interfering with the plate application.

orif screw fixation

Check the position of the humeral head in the axial/lateral view and be sure that there is no anteversion or excessive retroversion of the humeral head.

Remember that the C-arm should be placed so that AP and axial views can both be obtained by C-arm repositioning without motion of the patient’s arm.

orif screw fixation

4. Plate fixation

Attach plate to humeral shaft

Attach the plate to the humeral shaft with a bicortical small fragment 3.5 mm screw inserted through the elongated hole.

Pearl 1: fine tuning of plate position
If the first screw is inserted only loosely in the center of the elongated hole, fine-tuning of the plate position is still possible. With the plate in proper position, tighten this screw securely.

orif plate fixation

Correct plate position
The correct plate position is:

  1. about 5-8 mm distal to the top of the greater tuberosity
  2. aligned properly along the axis of the humeral shaft
  3. slightly posterior to the bicipital groove (2-4 mm)
Correct plate position

Confirmation of correct plate position
The correct plate position can be checked by palpation of its relationship to the bony structures and also confirmed by image intensification.

To confirm a correct axial plate position insert a K-wire through the proximal hole of the insertion guide. The K-wire should rest on the top of the humeral head.

To confirm a correct axial plate position insert a K-wire through the proximal hole of the insertion guide.

Pitfall 1: plate too close to the bicipital groove
The bicipital tendon and the ascending branch of the anterior humeral circumflex artery are at risk if the plate is positioned too close to the bicipital groove. (The illustration shows the plate in correct position, posterior to the bicipital groove).

Pitfall: plate too close to the bicipital groove

Pitfall 2: plate too proximal

A plate positioned too proximal carries two risks:

  1. The plate can impinge the acromion
  2. The most proximal screws might penetrate or fail to securely engage the humeral head

Remember that with an anatomical neck fracture, the humeral head fragment is small. Proper plate position is critical for optimal screw placement.

Pitfall: plate too proximal

Pearl 2: preliminary plate fixation with K-wires
For x-ray confirmation of plate position, one can fix the plate preliminarily to the bone with several 1.4 mm K-wires inserted through the small plate holes, before placing any screws.

orif plate fixation

Pearl 3: insert K-wires through appropriate guiding sleeves.

orif plate fixation

Fix plate to the humeral head

Drill holes
Use an appropriate sleeve to drill holes for the humeral head screws. Do not drill through the subchondral bone and into the shoulder joint.

orif plate fixation

Avoiding intraarticular screw placement
Screws that penetrate the humeral head may significantly damage the glenoid cartilage. Primary penetration occurs when the screws are initially placed. Secondary penetration is the result of subsequent fracture collapse. Drilling into the joint increases the risk of screws becoming intraarticular.

Two drilling techniques help to avoid drilling into the joint.

Pearl 1: “Woodpecker”-drilling technique (as illustrated)
In the woodpecker-drilling technique, advance the drill bit only for a short distance, then pull the drill back before advancing again. Keep repeating this procedure until subchondral bone contact can be felt. Take great care to avoid penetration of the humeral head.

Pearl 2: Drilling near cortex only
Particular in osteoporotic bone, one can drill only through the near cortex. Push the depth gauge through the remaining bone until subchondral resistance is felt.

“Woodpecker”-drilling technique

Determine screw length
The intact subchondral bone should be felt with a depth gauge or blunt pin to ensure that the screw stays within the humeral head. The integrity of the subchondral bone can be confirmed by palpation or the sound of the instrument tapping against it. Typically, choose a screw slightly shorter than the measured length.

orif plate fixation

Insert screw
Insert a locking-head screw through the screw sleeve into the humeral head. The sleeve aims the screw correctly. Particularly in osteoporotic bone, a screw may not follow the hole that has been drilled.

orif plate fixation

Number of screws and location
Place a sufficient number of screws (often 5) into the humeral head. The optimal number and location of screws has not been determined. Bone quality and fracture morphology should be considered. In osteoporotic bone a higher number of screws may be required.

orif plate fixation

Insert additional screws into the humeral shaft

Insert one or two additional bicortical screws into the humeral shaft.

Any K-wires placed during the procedure may now be removed.

isolated anatomical neck dislocation

5. Use of standard plates

If no angular stable plate is available, a standard plate provides an alternative. The described procedure (reduction, preliminary fixation, and rotator cuff sutures) is essentially the same for standard plates, except for the screws. A good choice from the standard plates is the small fragment cloverleaf plate, with its tip cut off, and contoured as necessary. This plate allows multiple small fragment screws for the humeral head.

Be aware that angular stable implants provide better fixation, especially in osteoporotic bone. On the other hand, even angular stable plates are not a substitute for good surgical technique and judgment. Advances in fracture classification, understanding of the blood supply, use of rotator cuff tendon sutures, anatomical fracture reduction, and provisional fixation, represent improvements in care. When combined with optimal implants, these contributions offer the best chance of a good outcome.

If no angular stable plate is available, a standard plate provides an alternative. The described procedure (reduction, ...

6. Final check of osteosynthesis

Using image intensification, carefully check for correct reduction and fixation (including proper implant position and length) at various arm positions. Ensure that screw tips are not intraarticular.

Carefully check for correct reduction and fixation (including proper implant position and length) at various arm positions.

Also obtain an axial view.

Also obtain an axial view.

7. Overview of rehabilitation

The shoulder is perhaps the most challenging joint to rehabilitate both postoperatively and after conservative treatment. Early passive motion according to pain tolerance can usually be started after the first postoperative day - even following major reconstruction or prosthetic replacement. The program of rehabilitation has to be adjusted to the ability and expectations of the patient and the quality and stability of the repair. Poor purchase of screws in osteoporotic bone, concern about soft-tissue healing (eg tendons or ligaments) or other special conditions (eg percutaneous cannulated screw fixation without tension-absorbing sutures) may enforce delay in beginning passive motion, often performed by a physiotherapist.

The full exercise program progresses to protected active and then self-assisted exercises. The stretching and strengthening phases follow. The ultimate goal is to regain strength and full function.

Postoperative physiotherapy must be carefully supervised. Some surgeons choose to manage their patient’s rehabilitation without a separate therapist, but still recognize the importance of carefully instructing and monitoring their patient’s recovery.

Activities of daily living can generally be resumed while avoiding certain stresses on the shoulder. Mild pain and some restriction of movement should not interfere with this. The more severe the initial displacement of a fracture, and the older the patient, the greater will be the likelihood of some residual loss of motion.

Progress of physiotherapy and callus formation should be monitored regularly. If weakness is greater than expected or fails to improve, the possibility of a nerve injury or a rotator cuff tear must be considered.

With regard to loss of motion, closed manipulation of the joint under anesthesia, may be indicated, once healing is sufficiently advanced. However, the danger of fixation loosening, or of a new fracture, especially in elderly patients, should be kept in mind. Arthroscopic lysis of adhesions or even open release and manipulation may be considered under certain circumstances, especially in younger individuals.

Progressive exercises

Mechanical support should be provided until the patient is sufficiently comfortable to begin shoulder use, and/or the fracture is sufficiently consolidated that displacement is unlikely.

Once these goals have been achieved, rehabilitative exercises can begin to restore range of motion, strength, and function.
The three phases of nonoperative treatment are thus:

  1. Immobilization
  2. Passive/assisted range of motion
  3. Progressive resistance exercises

Immobilization should be maintained as short as possible and as long as necessary. Usually, immobilization is recommended for 2-3 weeks, followed by gentle range of motion exercises. Resistance exercises can generally be started at 6 weeks. Isometric exercises may begin earlier, depending upon the injury and its repair. If greater or lesser tuberosity fractures have been repaired, it is important not to stress the rotator cuff muscles until the tendon insertions are securely healed.

nonoperative

Special considerations

Glenohumeral dislocation: Use of a sling or sling-and-swath device, at least intermittently, is more comfortable for patients who have had an associated glenohumeral dislocation. Particularly during sleep, this may help avoid a redislocation.

Weight bearing: Neither weight bearing nor heavy lifting are recommended for the injured limb until healing is secure.

Implant removal: Implant removal is generally not necessary unless loosening or impingement occurs. Implant removal can be combined with a shoulder arthrolysis, if necessary.

Shoulder rehabilitation protocol

Generally, shoulder rehabilitation protocols can be divided into three phases. Gentle range of motion can often begin early without stressing fixation or soft-tissue repair. Gentle assisted motion can frequently begin within a few weeks, the exact time and restriction depends on the injury and the patient. Resistance exercises to build strength and endurance should be delayed until bone and soft-tissue healing is secure. The schedule may need to be adjusted for each patient.

Phase 1 (approximately first 3 weeks)

  • Immobilization and/or support for 2-3 weeks
  • Pendulum exercises
  • Gently assisted motion
  • Avoid external rotation for first 6 weeks

Phase 2 (approximately weeks 3-9)

If there is clinical evidence of healing and fragments move as a unit, and no displacement is visible on the x-ray, then:

  • Active-assisted forward flexion and abduction
  • Gentle functional use week 3-6 (no abduction against resistance)
  • Gradually reduce assistance during motion from week 6 on

Phase 3 (approximately after week 9)

  • Add isotonic, concentric, and eccentric strengthening exercises
  • If there is bone healing but joint stiffness, then add passive stretching by physiotherapist