Authors of section

Authors

Brian Burkey, Neal Futran

Executive Editors

Gregorio Sánchez Aniceto, Marcelo Figari

General Editor

Daniel Buchbinder

Open all credits

Plate and scapular osteocutaneous free flap

1. Introduction

The need for reconstruction of mandibular defects is either due to trauma or tumor resection. The vast majority of oral cavity tumors are squamous cell carcinoma, and typically arise from the floor of mouth or adjacent alveolar mucosa. These tumors are therefore adjacent to the mandible and significant growth frequently leads to invasion of the bone.

A composite resection (segmental mandibulectomy) is the treatment of choice for oral malignant tumors that invade the mandibular cortex and marrow space. It provides an oncologically sound margin for these tumors; however, it disrupts the continuity of the mandible.

plate and scapular osteocutaneous free flap

General goal of reconstruction

Reconstruction of the mandible allows for the restoration of form and function. It must address all the tissue losses in order to provide for the best function.

The general goal of reconstruction is the:

  • Restoration/maintenance of airway
  • Restoration of mandibular continuity
  • Restoration of dentition
  • Restoration of chewing (mastication) and swallowing (deglutition)
  • Restoration of facial contour
  • Consistently obtain a healed wound
  • Reconstruction of a functional temporomandibular joint

Mandibular plating

Mandibular fixation is best achieved with the use of a load bearing locking mandibular reconstruction plate.

A wide variety of options are currently available:

  • 2.4 Uni-lock reconstruction plates
  • Matrix mandible reconstruction plates of different profiles (2.0, 2.5, 2.8), and screw diameters, with or without a condylar prosthesis
  • Anatomically preformed mandibular reconstruction plates

For illustration purposes we will show the use of a 2.4 reconstruction plate.

The advantage of the locking plate is that it does not require 100 % adaptation to the mandibular contour. Small gaps can be tolerated since the threaded screw head locks to the plate resulting in an internal "ExFix" construct..

plate and fibular osteocutaneous free flap

When the tumor extends lateral to the outer cortex of the mandible, the reconstruction plate cannot be fashioned by applying it directly to the mandible prior to the mandibulectomy. In this situation, the patient is placed in occlusion and MMF is established with either arch bars or rapid MMF screws between the maxilla and the non-diseased mandible.

Alternatively a custom made 3D-model of the mandible is made. This model is then used to shape the plate.

plate and scapular osteocutaneous free flap

In rare cases, a locking plate with a condylar head add on prosthesis may be used to reconstruct the TMJ and restore the vertical height of the ramus. This may include those instances when the bone flap is not long enough to reach the glenoid fossa, eg. defects greater than the hemi mandible, or when the bone shape does not allow creation of a neo condyle, eg. scapula.

The use of a TMJ prosthesis is controversial because of the occasional incidence of erosion of the prosthesis into the middle cranial fossa. If the surgeon chooses to use this prosthetic alternative, great care should be taken to position the prosthetic condyle into the glenoid fossa with an interpositional soft tissue flap to prevent erosion into the middle cranial fossa.

plate and fibular osteocutaneous free flap

Microvascular free tissue

Mandibular reconstruction with microvascular free tissue transfer is generally used for complex defects following tumor resection and trauma with tissue loss. It provides:

  • soft tissue and bone for the restoration of composite defects
  • a one stage procedure, allowing for timely adjuvant therapy for oncologic purposes, when necessary

2. Approach

The location and size of the tumor will dictate the surgical approach necessary for the performance of the ablative procedure.

The two following approaches are frequently used for the mandible:

Reconstruction of midface Brown II defect

3. Resection

Marking of incision lines

Incisions are marked out 1.5 cm around all visible and palpable tumor.

An extension of the incision is then carried posteriorly towards the mastoid and anteriorly to the submental region. Additional extensions can be made according to surgeon's preference to allow for simultaneous neck dissection.

A lip split incision can be added if necessary to improve access and visualization into of the mandibular condyle.

plate and scapular osteocutaneous free flap

Neck dissection

When the neck dissection is performed, care must be taken to dissect and preserve potential recipient vessels. It should be noted that on most occasions one or more branches of the facial nerve will need to be sacrificed due to tumor involvement.

plate and scapular osteocutaneous free flap

Skin incision around tumor

Dissection is carried through the skin incisions marked around the tumor and continued through the subcutaneous tissues until the mandibular bone is encountered. Externally, the masseter muscle will be divided on the lateral aspect of the mandible if it is not included in the resection.

plate and scapular osteocutaneous free flap

The periosteum is incised keeping at least 1 cm margins around the involved mandibular bone. The periosteum and soft tissues on the remaining native mandible are elevated proximal to the proposed anterior mandibular resection margin to allow for subsequent closure. The proposed line for the mandibular osteotomy is outlined.

plate and fibular osteocutaneous free flap

Extraction of tooth

In a dentate patient the tooth in the line of the mandibulectomy is extracted.

plate and fibular osteocutaneous free flap

Osteotomy cut

The bone cut made using a saw. Care is taken to resect a 1 cm margin of normal bone at the side of the remaining mandible.

plate and fibular osteocutaneous free flap

The tumor is visualized intraorally and 1.5 cm soft tissue margins are marked (eg. with an electro cautery) around all visible or palpable tumor in the oral cavity.

plate and scapular osteocutaneous free flap

Removal of the bone segment and tumor

The bone is retracted laterally, thus exposing the previously marked resection margin.

Medially, soft tissue cuts are made through the floor of mouth, the mylohyoid muscle, suprahyoid muscles, and deep tongue muscles if necessary.

Medially, the attachments of the medial pterygoid are released from the ascending ramus and the temporalis muscle is detached from the coronoid process.

plate and scapular osteocutaneous free flap

Laterally, the extension of the soft tissue resection depends on tumor infiltration and could include the masseter muscle, parotid gland, and facial nerve branches.

plate and fibular osteocutaneous free flap

The insertion of the lateral pterygoid muscle is detatched from the subcondylar region and the capsule of the temporomandibular joint is entered.

The condyle is retracted inferiorly and the ligaments divided, thus freeing the mandible.

plate and fibular osteocutaneous free flap

Every effort should be made to preserve the intraarticular disk of the TMJ, if oncologically sound.

plate and fibular osteocutaneous free flap

The specimen is submitted en bloc for permanent pathological examination.

Surgical soft tissue margins are now checked with frozen sections to ensure the adequacy of the tumor resection.

plate and scapular osteocutaneous free flap

4. Reconstruction

Placement of reconstruction plate

The patient is placed in occlusion and MMF is established with either arch bars or rapid MMF screws between the maxilla and the non-diseased mandible.

An angled locking mandibular reconstruction plate template is chosen and placed on the native mandible so as to engage at least 4 screw holes. The template should be fashioned such that the portion of the plate that will reconstruct the ascending ramus should reach just inferior and lateral to the TMJ capsule. This will allow reconstructed bone placed distally, to rest just below the intraarticular disk.

Alternatives:

  1. a preformed mandibular reconstruction plate could facilitate this type of reconstruction
  2. a custom made 3D-model of the mandible can be used to shape the plate.
plate and scapular osteocutaneous free flap

The plate is then bent to match the template. The plate is placed onto the mandible and final adjustments are made to produce a near perfect shape.

plate and fibular osteocutaneous free flap

The plate is placed and fixed in position with bicortical screws. The MMF can then be released.

plate and scapular osteocutaneous free flap

Harvest of graft

The scapula osteocutaneous flap is harvested in the standard fashion with the following considerations:

  • Two skin paddles are usually required for reconstruction of this defect, one for mucosal reconstruction and one for skin coverage. In this case, the skin paddles can be harvested in both transverse and vertical orientations (scapular and parascapular respectively). The skin paddles are best harvested as a single unit and separated once the bone segment has been fixed in place.
  • The length of the perforators to either skin paddle allows the skin segments to be positioned well distant from the bone segment, thus allowing for a tension free closure of almost any skin and mucosal defect in the neck.
  • For these longer bone defects involving the condyle, it is suggested to include the scapular tip in the flap harvest. The angular artery to the tip should be preserved during the harvest to ensure long term integrity of the bone.
  • While the scapula from either side can be used for a given defect, the ipsilateral scapula is usually chosen and the patient is placed in the lateral decubitus position. This allows for a single surgical prep with sequential harvesting of the graft.
plate and scapular osteocutaneous free flap

Trimming of the bone graft

The harvested bone graft is now measured against the mandibulectomy defect. The bone should extend distal to the ascending portion of the mandibular plate and rest just below the intraarticular TMJ disk.

plate and scapular osteocutaneous free flap

It is best to measure a small excess of bone when first trimming, particularly if osteotomies will be necessary to shape the bone, in order to compensate for bone loss during the subsequent steps. Any excess bone can then be trimmed prior to final insertion and fixation.

plate and scapular osteocutaneous free flap

Excess bone of the flap is measured and stripped of periosteum.

The bone is now trimmed with a saw to fit the defect. Care is taken to avoid injury to the vascular pedicle during this procedure.

Pitfall: If a burr is used to trim the bone, it may catch the periosteum and hence, damage the vascular pedicle

plate and scapular osteocutaneous free flap

Care must be taken to not injure the vascular pedicle during the closing ostectomies. Therefore, the periosteum should be freed from the bone resected during the closing ostectomy and retracted carefully during the bone cuts. Stripping of excess periosteum for the closing ostectomy will put vascular supply to the segment at risk.

plate and scapular osteocutaneous free flap

The bone should be contoured to match the overlaying plate as much as possible to avoid large bone-plate gaps. This will usually require performing closing ostectomies on the bone flap. The individual segments should not be less than 2.5 cm in length.

The scapular tip can be reshaped to mimic the shape of the resected condylar head.

plate and scapular osteocutaneous free flap

Fixation of the bone graft

Locking screws are placed in a monocortical fashion to secure the bone graft to the overlying mandibular reconstruction plate.

The distal end of the bone graft should reach distal to the plate, to the apex of the TMJ, and should rest just below the intraarticular disk. This end should be contoured, with a burr or rongeur to mimic the resected condyle, and covered with muscle or periosteum from the flap.

Alternatively, the trimmed bone flap may be fixated to the plate on the side table prior to inserting the plate.

plate and scapular osteocutaneous free flap

Once fixation is complete, the neomandible should be suspended from the root of the zygoma with a permanent suture to maintain its position within the joint space.

Postoperative MMF for 7-10 days could be helpful in order to maintain the occlusal relationship during the initial healing process. Elastics are recommended for a few weeks.

plate and scapular osteocutaneous free flap

Revascularization of flap

The detailed procedure for the revascularization is outside the scope of this surgery reference. However, in short the procedure consists of the following steps:

  • In condylar reconstructions particularly, the vessels of the flap are oriented so as to exit the flap at the anterior aspect of the reconstruction. This avoids kinking the vessels within the temporomandibular joint region and also provides an adequate length to reach the recipient vessels.
  • Appropriate recipient vessels are selected in the neck and dissected so as to be available for anastomosis.
  • The recipient and the donor vessels adventitia are cleaned under a microscope.
  • Appropriate vessel geometry is assured and the vessels are placed into a microvascular clamp and anastomosis carried out using 9-0 nylon sutures.
  • Vascularization is restored after both arterial and venous anastomoses are completed.
plate and fibular osteocutaneous free flap

Placement and closure of skin/soft tissue component

The skin component of the flap is now divided into appropriate sized paddles for the mucosal and skin defects. The paddles can be completely divided through skin and soft tissue but each must include its nutrient vessels to ensure survival.

One skin paddle is rotated over the neomandible into its preplanned position on the neck/face with care not to create undue torsion or tension on the skin perforators. The second skin paddle is rotated into the oral cavity defect.

Closure of the intraoral defect is accomplished first, closing skin to mucosa with interrupted mattress sutures eg. 3-0 Vicryl. A water tight closure is essential to avoid a salivary leak into the neck with subsequent infection in the surgical site and an orocutaneous fistula. The skin closure is carried out in layered fashion using absorbable sutures eg. 3-0 Vicryl for the deep layers and nylon for the skin.

symphysis lateral condyle mucosa and skin

The transected suprahyoid and floor of the mouth muscles should be re-suspended to the new mandibular symphysis eg, with sutures to the free holes in the plate. Care must be taken in avoiding damage to the free flap pedicle during this maneuver.

plate and scapular osteocutaneous free flap

Alternatively a hyoid suspension suture may be used to elevate the larynx and to maintain normal deglutition and avoid aspiration.

plate and scapular osteocutaneous free flap

5. Aftercare following mandibular reconstruction

Medication

The use of the following perioperative medication is controversial. There is little evidence to make strong recommendations for postoperative medications.

  • Analgesia as necessary
  • Antibiotics (many surgeons use perioperative antibiotics). There is no clear advantage of any one antibiotic but evidence supports their use for 24h. The spectrum should be according to the oral bacterial flora, but the physician should be aware of changes that may occur after the use of radiation therapy.
  • Steroids may help with postoperative edema.
  • Regular perioral and oral wound care has to include disinfectant mouth rinse, lip care, etc.
  • Antibiotic ointment is used on the wounds for 72 hours
  • If a free flap is utilized for the reconstruction, 80-100 mg of aspirin/day is recommended.

Wound care

Remove any sutures from skin after approximately 7 days if nonresorbable sutures have been used. If the patient has had previous radiation, the sutures should be left in for 10 – 14 days.
Wound should be cleaned at least twice daily with hydrogen peroxide or mild soap and water. Moisturizing lotion should be used on the skin wounds to minimize excessive scarring after sutures are removed.
Avoid sun exposure and tanning to skin incisions for several months.

Diet

Diet depends on the reconstructive method. In general patients with superficial wounds can begin an oral diet within 48h postoperatively. Patients who have undergone a more significant surgery eg. flap reconstruction are kept NPO for 5-10 days and nutrition is administered via nasogastric tube. Oral feedings are begun using thickened liquids only after swallowing is assessed by the surgeon or the speech pathologist, and the risk of aspiration is minimal. Diet can be advanced as tolerated by the patient.

Clinical follow-up

Typically the patients are seen in clinical follow-up one week after discharge, and then on a weekly basis until such time the clinician determines that less frequent follow ups are needed.

Oral hygiene

Patients with intraoral incisions and/or wounds must be instructed in appropriate oral hygiene procedures. A soft toothbrush (dipped in warm water to make it softer) or water flosser should be used to clean the surfaces of the teeth. Chlorhexidine oral rinses should be prescribed and used at least 3 times a day to help sanitize the mouth. For larger debris, a 1:1 mixture of hydrogen peroxide/chlorhexidine can be used. The bubbling action of the hydrogen peroxide helps remove debris.

Reconstruction with free flap

When a free flap is utilized, it should be regularly monitored to ensure vascular integrity. Physical examination, assessing the flap color, turgidity, and capillary refill should be routine for at least the first 48 hours postoperatively. Hand-held Doppler probes can be used to assess blood flow. In case of doubt of the vitality of the flap, pin-prick assessment with a 25 gauge needle to look for bright red bleeding.. In cases of buried flaps, an implantable Doppler placed just distal to the venous anastomosis can be utilized.

Closed suction drains are routinely used at the donor site. The drain is removed when output is <30cc per 8 hour period, for three consecutive periods. Patients are typically discharged from the hospital 5-10 days after surgery, depending on their postoperative course and comorbidites. Close outpatient follow-up after discharge is recommended for evaluation of surgical sites.

Radial forearm free flap
The radial forearm free flap donor site should be closed with a skin graft and a bolster placed over the area. The arm is then cast or placed in a volar splint for 7 days prior to removal to ensure graft take.

Fibula free flap
After a fibula free flap, the donor lower leg should be cast with the ankle slightly dorsiflexed for 5 days. The patient can touch-down their body weight as tolerated. After the cast is removed they can ambulate and work with physical therapy to optimize leg function. A splint should be placed to keep the foot flexed when in bed. The routine use of a compression stocking for one month postoperatively will reduce the amount of lower leg dependent edema and aid in improved wound healing.

Scapula free flap
In the initial postoperative recovery, the ipsilateral arm should be positioned anteriorly and medially, usually supported on the patient’s abdomen by a pillow. Once the patient is ambulating, the arm is supported by a shoulder sling which supports the elbow and prevents inferior drift of the arm. Inpatient physical therapy is initiated once the patient is mobile. A post-operative physical therapy regimen is established with the patient to be maintained after hospital discharge. The sling is used for 2-3 weeks and physical therapy maintained until postoperative function is optimized, usually 4-6 weeks.

Iliac crest
The iiliac crest donor site requires that the patient not strain or lift heavy objects for at least 4 weeks to avoid hernia formation. Patients are typically limited to a bed or chair for 48h postoperatively and then physical therapy is begun with the patient initially ambulating with the aid of a walker or cane and progressing as tolerated.

Latissimus dorsi
No specific rehabilitation is necessary following the use of this flap.