Authors of section


Ernst Raaymakers, Inger Schipper, Rogier Simmermacher, Chris van der Werken

Executive Editors

Joseph Schatzker, Peter Trafton

Open all credits


1. Principles

Arthroplasty for femoral neck fractures

Displaced intracapsular femoral neck fractures in the elderly have a high risk of failed fixation, non-union, and avascular necrosis. For appropriately selected patients, arthroplasty with either a hemi-arthroplasty or total hip replacement may be more successful. Arthroplasty reduces the need for reoperation. It should also allow early weight bearing. It is, however, a bigger operation with possible serious complications.


For split fractures of the head with displaced neck fracture, arthroplasty might be the most successful treatment, particularly for older patients or unreconstructable head fractures.
For split and depression fractures of the femoral head, arthroplasty or total hip replacement is very rarely the primary choice, but may be necessary for salvage.


Hemiarthroplasty vs total hip replacement

The surgeon is faced with several choices for arthroplasty for a femoral neck fracture. The first is whether to fix the fracture or to perform an arthroplasty. If arthroplasty is chosen, the next issue is what kind of arthroplasty. The two major types are hemiarthroplasty (replacement of the femoral head and neck) or total hip replacement, in which both the proximal femur and the acetabular surface are replaced. Hemiarthroplasty is a less complicated operation, and provides generally satisfactory results for less active patients. Reported results of total hip replacement for femoral neck fractures are improving, so that total hip replacement is increasingly favored for displaced femoral neck fractures, particularly for more active patients.

Hemiarthroplasty and total hip replacement

Type of hemiprosthesis

The original proximal femoral hemiarthroplasty prostheses were made of a single casting with a femoral stem attached to the femoral neck and head. The Austin-Moore prosthesis is a common example.
More modern hemiarthroplasties are modular, allowing different combinations of stem, neck length, and head. These provide a better-fitting prosthesis for most patients, so that leg length and femoral offset may be equalized, and hip muscle tension can be adjusted for better function and reduced risk of dislocation.
So-called bicentric or bipolar prostheses have a smaller inner ball that articulates within a larger head component that fits the acetabulum. However, their reported results so far are no better than non-articulated (unipolar) prostheses. Thus their extra cost and complexity are not justifiable.

Type of hemiprosthesis

Total hip prosthesis

Based on current publications, total hip arthroplasty is becoming an attractive option for healthy, active older patients with displaced femoral neck fractures. In particular, patients with pre-existing hip arthritis have a poorer outcome with other alternatives. Thus, total hip arthroplasty is optimal treatment for such patients. To date, available high-quality studies do not demonstrate a convincing difference between hemiarthroplasty and total hip arthroplasty. Larger trials are necessary to demonstrate what if any differences exist between these procedures regarding results, indications, and variations.

Total hip prosthesis

Primary indication for total hip replacement (example)

A patient with preexistent osteoarthritis of the hip joint and a femoral neck fracture. The x-ray on the right was made nine years after total hip prosthesis.

Preexistent osteoarthritis of the hip joint and a femoral neck fracture. Right x-ray: 9 years after total hip prosthesis.

Conversion of a modular hemiprosthesis to total hip prosthesis

Dislocation of hip arthroplasty for femoral neck fractures is a significant and occasional complication.
These x-rays show (left) a dislocated hemiarthroplasty and (right) its salvage by conversion to a hip replacement. In this case the original femoral stem was retained, with a replacement of its head and neck for total hip arthroplasty. The acetabular component (with supporting bone graft) was inserted before the new head and neck were attached.

The left x-ray: missed dislocation of a hemiprosthesis. Right x-ray: After conversion to total hip replacement.

Cemented or uncemented prosthesis

The proximal femoral prosthesis is inserted into the femur after cutting the femoral neck to fit, and preparing the medullary canal.
The canal can be shaped so that the prosthetic stem fits snugly, but without great stability (press-fit). Stability can be increased by using a smaller stem than the canal and anchoring it with methyl-methacrylate cement. Proper cement insertion improves stability. It typically includes use of a femoral plug and pressurized injection of a more fluid cement. These measures also reduce the risk of cement failure.
Another alternative for stable fixation is to use a stem that fits the bone snugly and has a surface that promotes bony ingrowth. This alternative requires a more expensive prosthesis and protection from early weight bearing, thus it is less appropriate for the elderly.

Cemented or uncemented prosthesis

Further reading

2. Preoperative planning and approaches for hip arthroplasty

Preoperative planning

Whatever arthroplasty is chosen, the procedure should be carefully planned with sufficient detail. Select the prosthesis with the aid of radiographic templates (or electronic planning software with digital x-rays) and appropriate x-rays of the normal and injured hip.
In addition to the selected prosthesis, possible alternatives should be available in the operating room.

Preoperative planning

Anterior approaches

Many surgeons prefer an anterior or anterolateral approach for arthroplasty, with the patient positioned laterally or supine. An anterior arthrotomy with preservation of the posterior capsule may reduce the risk of prosthetic dislocation, particularly for hemiarthroplasties. Hip arthroplasty can be performed through several different incisions. There is no convincing evidence that one is better. Thus, the choice is up to the surgeon:

Anterolateral approach

Posterior approach

A posterior approach, with the patient on her side, is also commonly used. Dislocation may be more frequent with a posterior approach, according to many, but not all, reports. Other factors are also important. Proper positioning of the prosthesis, and perhaps repair of the posterior capsule may improve stability.

Posterolateral approach

3. Patient preparation

Preoperative planning

Depending on the approach, the patient may be placed in the following positions:

4. Removal of the femoral head

The operation begins with adequate exposure of the fracture site through a sufficient capsular incision. For hemiarthroplasty, the acetabular labrum should be preserved, as it improves stability.
Next, remove the femoral head. Use a “corkscrew” (threaded handle), as illustrated, retracting the distal femur, and dividing the ligamentum teres as necessary.
An additional osteotomy of the femoral neck is usually required to obtain correct neck length and to fit the flange of the prosthesis (if there is one).
Inspect the acetabulum and remove small bone fragments. If arthrosis of the acetabulum is observed, a total hip prosthesis might be preferable to a hemiprosthesis.

Removal of the femoral head

5. Hemiarthroplasty vs total hip replacement

If hemiarthroplasty is planned, the femur is prepared, an appropriate femoral head and neck size is chosen and confirmed with trial components, and then the definitive prosthesis is inserted.

For a detailed description of hemiarthroplasty, continue with step 5.


If total hip replacement is chosen, the acetabular preparation and component insertion are done prior to definitive insertion of the femoral component.

For details on total hip replacement, continue with step 8.

Total hip replacement

6. Hemiarthroplasty - Determine size of femoral head component

To determine the diameter of the femoral head component, measure the removed femoral head. The chosen size should be confirmed by manually testing the fit of a trial femoral head prosthesis within the acetabulum.

To determine the size of the femoral head component, measure the diameter of the removed femoral head.

7. Hemiarthroplasty - Prepare stem insertion

Osteotomy of the femoral neck

Choose the correct level for the definitive osteotomy, which determines the height of the prosthesis. The remaining femoral neck should be long enough to maintain equal leg lengths, as well as proper soft-tissue tension.
The orientation of the osteotomy depends on the chosen prosthesis. It usually begins in the fossa below the greater trochanter. If the prosthesis has a flange, the osteotomy must match this. The osteotomy should also be perpendicular to the axis of the femoral neck, so the prosthetic anteversion is correct.

The leg is in full external rotation and the knee flexed to 90°.

Pitfall - Short femoral neck

Too short a femoral neck can result in insufficient muscle tension, which may increase the risk of a postoperative dislocation of the prosthesis, or hip abductor weakness. Usually, at least a centimeter or two of neck should remain proximal to the lesser trochanter. Plan carefully according to the prosthetic design.

Ensure correct rotation of the prosthesis

The prosthesis must be correctly aligned in the femoral transverse plane. The neck of the femoral component should usually be co-axial with the femoral neck, as in the illustration. "β" indicates the angle of anteversion of the femoral neck, and of the prosthesis. Avoid excessive anterior rotation (anteversion), and especially posterior rotation (retroversion), as the latter predisposes to dislocation of the prosthetic hip.
Correct rotational alignment is achieved by cutting the femoral neck perpendicularly to its axis (to accept a flange on the prosthesis), and maintaining the desired anteversion while preparing the femoral medullary canal with rasps and broaches.

Ensure correct rotation of the prosthesis

Correct rotation of the prosthesis with the patient supine (anterior approach)

To ensure correct rotation of the prosthesis, the leg is in full external rotation and the knee flexed to 90° (“figure 4” position). External rotation of the prosthesis, (away from the plane of the tibia) increases anteversion. The correct position is approximately 15° externally rotated relative to the axis of knee flexion.

The leg is in full external rotation and the knee flexed to 90°.

Correct rotation of the prosthesis, using an anterolateral approach, with the patient in the lateral decubitus position

Exposure of the proximal femur is accomplished by careful placement of the involved limb in an externally rotated and flexed position with the lower leg hanging over the edge of the operating table. To maintain sterility, the lower leg is inserted into an envelope or pocket made from a sterile sheet. The assistant holds the patient’s leg perpendicular to the table surface, which is thus the plane of the knee axis. Proper anteversion is achieved by externally rotating the femoral prosthesis, so its neck is aimed approximately 15° anteriorly to the knee axis (or table surface).

a “Figure-four” position (flexion to 90° combined with adduction and external rotation).

Posterolateral or posterior approach with patient in lateral decubitus position

With this approach, the hip is accessed through a posterior capsulotomy, through which the femoral head is removed. Internal rotation of the lower extremity delivers the femoral neck for osteotomy and femoral canal preparation. Correct rotational orientation of the prosthesis requires reference to the femoral coronal plane, shown by flexing the knee to 90°. An assistant holds the leg internally rotated, so that the tibia is perpendicular to the table surface. The anteversion angle of the femoral neck and prosthesis (β = approximately 15°) is then estimated as illustrated.

a “Figure-four” position (flexion to 90° combined with adduction and external rotation).

Medullary preparation

The femoral awl is inserted, initially laterally, in the femoral neck, and rotated to match the femoral neck anteversion (approximately 15°). The lateral starting point helps avoid varus malposition.
Intramedullary cancellous bone is progressively removed, usually with a series of rasps, until the prosthesis fits appropriately within the medullary canal.
Although the size of the femoral stem was estimated with preoperative planning, it should be confirmed definitively by the fit of the rasp within the medullary canal.

Medullary preparation

Choice of the right stem size

If an uncemented implant is used, the stem of the prosthesis should snugly fill the prepared medullary cavity.
If cement is used, the stem size should be somewhat smaller than the prepared medullary cavity to allow for an appropriate layer of cement.

Choice of the right stem size

8. Hemiarthroplasty - Insertion and assembly of the prosthesis

Introduction and correct position of the prosthesis in the frontal plane

The prosthesis is introduced into the prepared femoral medullary canal. Because both the femur and the prosthesis are eccentrically loaded, bending forces are acting on the prosthetic head, forcing the prosthetic stem in varus. The prosthesis – cemented or uncemented - should be inserted in valgus orientation, with the proximal stem laterally, and its distal tip close to the medial femoral cortex.
This illustration shows a cemented femoral stem with correct valgus alignment on the left and excessive varus on the right.

Bending forces are acting on the prosthetic head, forcing the prosthetic stem in varus.

Cementing technique

Since new cementing techniques have been introduced, the long-term results of the cemented prosthesis have been considerably improved.
A cement restrictor, placed a centimeter or so below the prosthesis, allows the cement to be pressurized so that it flows into the cancellous bone rather than into the distal femur.
Before inserting cement, clean the canal with irrigation and an appropriate brush. Place a temporary dry sponge in the canal, to be removed just before the cement is inserted.
By mixing the cement liquid and powder in a low-pressure container, air bubbles are avoided, and the cement is stronger.

The use of a cement stopper limits the spreading of the bone cement to the area where it is needed.

Cementing of the medullary canal

The prepared medullary cavity is filled from bottom to top with a cement gun, as illustrated. Withdraw the cement gun as the medullary canal fills. Avoid mixing blood or air with the cement.
Compressing the cement before and by prosthesis insertion pushes it into the surrounding bone, thus improving its anchorage.

The medullary cavity is filled with cement with the cement gun.

Prosthesis insertion

Before the cement hardens, the prosthesis is inserted with correct rotation (anteversion) and valgus alignment. It must be placed to the appropriate, predetermined depth. Once the stem is seated, allow the cement to set undisturbed. Trim off any excessive cement, and carefully remove all cement fragments from the hip joint and surrounding wound.

Before the cement hardens, the prosthesis is inserted with correct rotation (anteversion) and valgus alignment.

Assembly of the prosthesis

For a hemiarthroplasty, use a trial femoral head prosthesis on the cemented stem to confirm both diameter and neck length. The latter affects both leg length soft-tissue tension, and hip stability.
For total hip arthroplasty a similar trial prosthesis is used to check length and offset. Head size, however, is determined by the preoperatively selected acetabular component. Total hip prostheses with larger heads tend to be more stable.

In order to limit the increase of temperature, the amount of cement should be limited to about 5 mm around the prosthesis.

With the hip reduced, confirm range of motion and stability. Adjust the neck and head if necessary.
Once satisfactory, attach the definitive femoral head to the stem, and reduce the hip. Confirm complete reduction, stability, and range of motion.

Attach the definitive femoral head to the stem, and reduce the hip.

9. Total hip replacement


With total hip replacement, the acetabulum is replaced in addition to the femoral head and neck. The acetabular component is chosen based upon the patient’s anatomy, with the aid of preoperative x-rays and intraoperative trials.
While the external diameter of the acetabular component is definitively selected intraoperatively, its internal diameter, the same as that of the matching femoral head component, is a feature of the chosen prosthetic system.
The acetabular prosthesis must be fixed to the pelvis. This can be either uncemented (with bony ingrowth) or cemented. Early weight bearing may be safer with cement. This is usually preferable in the elderly and will be illustrated.

In total hip replacement, the acetabulum is replaced in addition to the femoral head and neck.


First, the acetabular cartilage has to be removed with a reamer. Orient this anatomically, perpendicular to the plane of the bony acetabulum. Ream until cancellous bone is exposed and the desired fit is achieved, but without removing the inner table of the innominate bone.

Note: In osteoarthritis, the acetabular bone is often sclerotic, and the reaming may require some effort. Hip fractures occur in patients with osteoporosis, and if there was no pre-existing arthritis, the bone is often very soft and reaming should be performed gently and carefully.

The acetabular cartilage has to be removed with a reamer.

Anchorage holes

For better anchorage of the cement and cup, several holes with a diameter of about 6 mm are drilled in multiple locations as illustrated.

For better anchorage of the cemented cup, 7 – 10 holes with a diameter of about 6 mm are drilled all over the acetabulum.

Impaction of bone

With a corresponding punch the cancellous bone in the drilled holes may be impacted.

With a corresponding punch the cancellous bone in the drilled holes is impacted.

Choosing the right size for the acetabular prosthesis

The cup should fill as much of the available space in the acetabulum as possible, extending only a little beyond the bone. Choose an acetabular prosthesis that needs as little surrounding cement as possible.
Confirm the correct size with a trial prosthesis, as shown in the photograph.

The cup should fill as much of the available space in the acetabulum as possible.

Placement of prosthesis

It is important that the acetabular prosthesis is oriented correctly, usually in the same way as the patient's own acetabulum. It should not be directed posteriorly (retroverted) nor too anteriorly (excessive anteversion).
For optimal hip joint stability and prosthetic wear, approximately 45° abduction and 15° anteversion are commonly advised.
The cement is applied in a putty-like solid state by hand and pushed into the drill-holes.
Under firm pressure the acetabular prosthesis is inserted in an anatomical position and the cement is allowed to harden.

Placement of prosthesis

Orientation of acetabular component

The normal acetabulum faces anteriorly, approximately 15°. It is also oriented obliquely (abducted, from a horizontal position) so that the superior part of the femoral head has adequate coverage by the acetabulum.
The illustrations demonstrate the anterior rotation (acetabular anteversion = α) ...

Orientation of acetabular component

... and also abduction (= A, approximately 45°). Both anteversion and abduction must be set correctly during placement of the acetabular prosthesis.

Orientation of acetabular component

Stem insertion

The steps for stem insertion are the same as for a hemiarthroplasty. Please refer to step 6 for further details.

Stem insertion

Attachment of femoral head component

Use a trial head and neck component to confirm range of motion and stability. Then attach the definitive head head-neck component(s) and reconfirm that the prosthetic joint performs satisfactorily.

Choice of femoral head component

Reduction of the artificial hip

Once the prosthetic components are in place and stable, the hip is gently reduced.
Make sure that cement debris are removed first and that soft tissues are retracted.
Place the leg in normal extension. With gentle traction and internal rotation, the hip joint can usually be reduced.

By gentle traction and internal rotation, the hip joint can be reduced.

Reduction of the artificial hip

It may help to guide the femoral head into the acetabulum.

By gentle traction and internal rotation, the hip joint can be reduced.

Pitfall – decreased joint stability

Ensure correct rotational alignment (normal anteversion) of both acetabular and femoral components. Retroversion of either acetabular or femoral component increases the risk of dislocation.

Ensure correct rotational alignment (normal anteversion) of both acetabular and femoral components.

After reduction, check stability and soft-tissue tension. A more appropriate neck length may improve stability.
Equalizing leg length is a valid goal, but avoiding dislocation is probably more important. Occasionally, special prosthetic designs may be required.

A more appropriate neck length may improve stability.

10. Perioperative care

Routine perioperative care includes:

  • Brief intravenous antibiotics
  • VTE prophylaxis
  • Nutritional supplementation
  • Pain management without over-sedatation
  • Prevention of pressure sores
  • Early mobilization
  • Early discharge planning
  • Osteoporosis evaluation and management

For more details see the additional material on perioperative care for elderly hip fracture patients.

To reduce the risk of prosthetic hip dislocation during the first 6 weeks, the patient should avoid certain leg positions and activities. Adduction across the midline, hip flexion of more than 80° to 90°, and internal rotation should be avoided particularly after a posterior approach. Adduction and external rotation should be avoided after an anterior exposure.
Low seats and toilets, flexing the hip when arising, as well as squatting and kneeling should also be avoided initially, as should pivoting on the affected leg. Dislocation precautions can gradually be relaxed after 6 weeks, once the soft tissues have healed enough to limit hip motion. For more details see the additional material on arthroplasty dislocation precautions.

Full weight bearing can usually be allowed immediately (cemented prosthesis). The patient should begin with a walker (walking frame) and be instructed in safe transfers and gait. If these progress satisfactorily, use of crutches, and perhaps stair climbing, may be possible.

Follow up assessment for wound healing, neurologic status, comfort and function should occur at 4-6 week intervals for the first three months. Earlier follow up may be necessary to assess pain, wound healing problems or impaired function, etc. In the absence of significant or increasing pain, deformity, or abnormal motion, routine radiographs are not necessary until the surgeon wishes to confirm implant status for prognosis at long-term follow-up.